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Motivation

Decay kinetics of CAWO, under different excitations

e« 0.8 US Gillette, R.H., 1950. Rev. Sci. Instrum. 21, p. 294

e 1.1 ps, 14.5 us D. Kinloch et al., IEEE Trans. Nucl. Sci. 41,
752 (1994).

e 2 US R. Deych et al., Proc. SCINT95, 1996, p. 36.

e 5 US C.L. Melcher et al., IEEE Trans. Nucl. Sci. 36, 1188 (1989)
e /.8 US Beard, G.B. et al., 1962. J Appl. Phys.. 33, p. 144

e O WS B.C. Grabmaier. IEEE Trans. Nucl. Sci. 31, 372 (1984)

e 13-15 uS under optical excitation! Many papers.

Central idea:

The differences observed in the decay Kinetics are due to the different
densities of electronic excitations created in tracks of x-ray or y quanta
of different energies used in the studies of scintillation response. (?)




Frenkel excitons created at high densities.
Self-quenching of STEs Sample
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Frenkel excitons created at high densities.
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Forster dipole-dipole energy transfer
M. Kirm et al, Phys. Rev. B 79 (2009) 233103
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o — exciton yield

a — pulse radius




Experiments performed

*High-order harmonics generation (HHG): 23-32 eV, 10-15 fs
M. Kirm et. al., Phys. Rev. B 79, 233103 (2009)
*Free electron laser (FEL): 89 eV, 25 {s
S. Vielhauer et. al., Phys. Sol. State, 50, 1789 (2008)

Optical parametric amplifier (OPA, 240 - 2600 nm, 1-200
uJ/pulse, 100 fs,

1 kHz (Laser Research Centre, Vilnius University)
V. Nagirnyi et. al., IEEE Trans. Nucl. Sci. 57, 1182 (2010)
R. Laasner et al., under preparation.



Estimation of parameters
(High order harmonic generation, Saclay)
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Estimation of parameters 2
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CdWOQO, excitation in the Urbach tail region
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313 nm (3.96 V)
°a.=77.6 cm’!

og=1

301.9nm (4.11 eV)
°a.= 1036 cm!
og=1

«+ 70nJ

Intensity
o
i

Time, us



Problem

394 R, apparent energy dependence on laser pulse power A
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Reasons of the saturation of excitonic
absorption

Interband transitions

Urbach tail region (Burstein effect)

Ordinary exc. : ~80 fs exc.

Phonon A
Photon
Photon
EVB —_— EVB
i .

e T
Phonon-assisted M

exciton creation i Nuclei displacements



Modeling

1.0

80 fs pulses

Saturated absorption

a:alm(l—n(r,t)/no) .

n, — maximum possible 2 s . =
concentration of excitations Sample depth (a. u.)

Concentration of excitons (a. u.)
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Modeling non-proportionality in terms of the
Forster radius
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Non-proportionality of CAWO, defined as the
light yield relative to 662 keV.
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Track spatial and temporal structure

(A.N. Vasil’ev, SCINT’2009)

Initial electron track structure is defined by isolated and overlapped clusters of
excitations with initial size of about 3 nm (just after initial recombination and
thermalization of electrons and holes, ps time domain) and distances between

clusters are about 1 to 100 nm.
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Voltage (normalized)

Voltage (normalized)

RE activated scintillators
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Theoretical analysis, further works

A. N. Vasil’ev, IEEE Trans. Nucl. Sci. 55, 1054 (2008).

G. Bizarri et al., J. Appl. Phys. 105, 044507 (2009).

G. Bizarri et al., J. Lumin. 129, 1790 (2009).

R. T. Williams et al., phys. stat. sol. (b) 248, 426 (2011).

W. W. Moses et al., IEEE Trans. Nucl. Sci. PP, 1 (2012).

Qi LIetal.,J. Appl. Phys. 109, 123716 (2011)

Qi Li et al., P hys. Status Solidi RRL 6, No. 8, 346348 (2012).

Main directions of studies
(factors that influence proportionality of LY):

1. Charge carrier thermalization rate

2. Diffusion of charge carriers and excitons:

« group velocity of hot electrons

» mobility of thermalized charge carriers

* hole self-trapping

3. Quenching of luminescence

* linear — trapping at defects and impurities

* nonlinear — second order Forster, third order Auger



Nonproportionality in solids

Scintillator physical “Decision Tree"

oxides, high low w heavier halides
fluorides (1, Br, Cl)

carrier pairing charge separation (storage)

thermal diffusion hot electron diffusion

2™ order quench 3 order quench
Iargn D, small D, small v, large v,

excitons (U /U, €) hot electrons (STH)

small k, large k;
roll-off Y,(E,) high LY Itlrlp- nm-hr:s
semiconductors, most oxides, multivalent monovalent
YAP fluorides I, Br, Cl I, Br, Cl

|_ P LI ‘ﬁl ]

Q1 Li et al., Phys. Status Solidi RRL 6, No. 8, 346-348 (2012).




To study

Charge carrier relaxation (exciton formation)
Charge carrier mobility (diffusion)
Mutual interaction of electronic excitations

Interaction of electronic excitations with impurities and
defects, charge trapping

Two additional experiments

High-density excitation; the study of interaction of
electronic excitations (Saclay, Vilnius)

Time-resolved interferometry; the study of thermalization
and trapping dynamics of electronic excitations (Saclay)



Thank you for attention
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