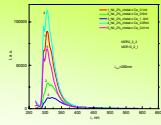
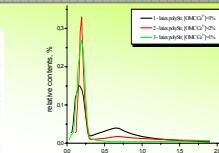
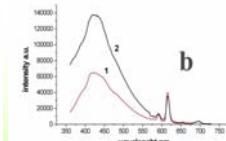
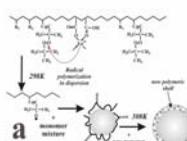


TEMPLATE SYNTHESIS AND CHARACTERIZATION OF OLIGOPEROXIDE BASED POLYMER-MINERAL NANOSCALE PHOSPHORS AND SCINTILLATORS

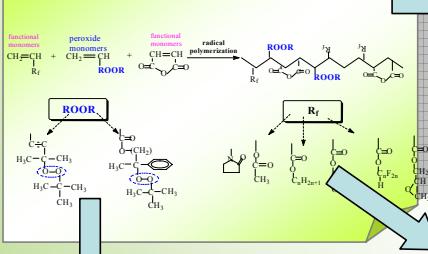
O. Shapoval¹, L. Myagkota², N. Mitina¹, V. Glazunova³, Yu. Kulyk², V. Vistovskiy², A. Voloshinovskii², A. Gektin⁴, and A. Zaichenko¹

¹Lviv Polytechnic National University, 12 S. Bandera Str., Lviv, 79013, Ukraine; ²Ivan Franko National University of Lviv, 8, Kypta i Mefodija str., Lviv, 79065, Ukraine; ³O.O.Galkin Donetsk Institute of Physics and Engineering of NASU, Donetsk, 83174, Ukraine; ⁴Institute for Schelkovina Materials of NASU, Khar'kov, 61001, Ukraine. e-mail: zaichenko@polyer.lviv.ua

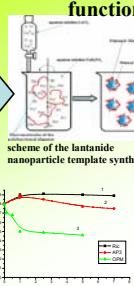




Biocompatible luminescent (fluorescent) nanoparticles with controlled size distribution, reactivity and functionality as well as the techniques of their synthesis were developed. We obtained colloidal systems containing monodisperse nanoparticles with tailored particle morphology. The development of polymeric and polymer-mineral nanoparticles and their stable colloidal systems is based on using novel surface-active coordinating metal complexes with functional oligoperoxide ligands as templates for the particle homogeneous nucleation, as initiators and stabilizers simultaneously.

Compositional nanoparticles comprise of polystyrene, polycrylic acid containing in some cases fluorescent dyes or LaPO₄, Au, core and functional reactive polymeric shell. The polymeric nanoparticles were sized 60, 100 and 300 nm. The size of hybrid polymer-mineral nanoparticles was 15-30 nm.

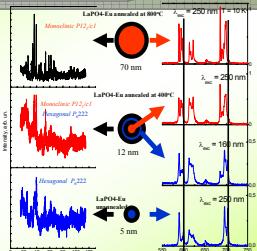
The principal feature of the developed functional nanoparticles is an availability of radical forming sites in their polymeric shell providing them an ability to initiate radical grafting and to introduce desired functional groups at definite distance from the particle core and as a result to attach cell recognizable proteins – lectins targeting to the pathological (apoptotic or tumor) cell specifically.

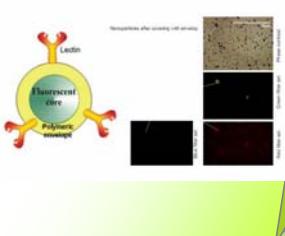
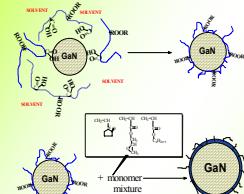

We successfully examined them as luminescent markers, drug carriers and bioanalytical reagents. Novel colored polymeric functional nanocomposites can be used for the measuring the phagocytosis activity of granulocytes of human blood, as labeled carriers of immobilized enzymes and drugs.

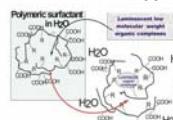
Polymer Nanoparticles with Luminescent Shell



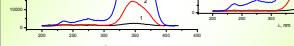
The scheme of the synthesis and functionalization of luminescent polymer NCs (a); luminescence spectrum (b) of Eu³⁺ coordinated OMC (1) and polymer NCs (2) synthesized in the presence of this OMC; TEM images of luminescent NCs (c).

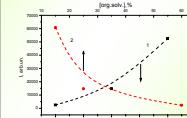

Functional oligoperoxide surfactants



Nanoparticles of lanthanide salts with functional polymer shell

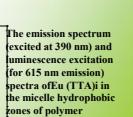

TEM - images of the LaPO₄ - Eu particles obtained at different concentrations of oligoperoxide surfactant, before(19,20) and after (19,20) annealing: 19) 1% OPM, 20) 2.5% OPM

Oligoperoxide functionalization of luminescent mineral nanoparticles


Encapsulation of water-insoluble organic complexes


The scheme of the preparing water systems via solubilization of water insoluble organic complexes in the solution of oligoperoxide surfactants

The scheme of obtaining dispersions of nanogel particles with adsorbed organic luminescent complexes



The excitation spectra (excited at 390 nm) complexes Eu(TTA)3TFFO solubilized in water in the presence of oligoperoxide

Eu(TTA)3TFFO, where TTA - thienyltrifluoroacetone, TFFO - triphenyl phosphonium

The dependences of the excitation intensity on the concentration of luminescent complex in aqueous suspension (1) and the concentration of organic solvent used for solubilization (2)

